TP TC Eco conception

Support : ordinateur, robot Moway

Pré requis (l'élève doit savoir):

- Savoir utiliser un ordinateur

Programme

CO1.1 : **Justifier** les choix des matériaux, des structures d'un système et les énergies mises en œuvre dans une approche développement

CO2.2 : Justifier les solutions constructives d'un système au regard des impacts environnementaux et économiques engendrés tout au long de son cycle de vie.

Objectif terminale :

L'élève doit être capable de définir le matériau le plus approprié pour un système ayant le moins d'impact environnemental

<u>Matériel :</u>

- logiciel Excel
- logiciel solidworks
- robot Roway

Travail demandé

1. cycle de vie

Cahier des charges

On veut utiliser le robot Moway en tant que système de surveillance autonome, utilisé dans un logement individuel.

Le robot, équipé d'une caméra, effectue une ronde de 5 min, toutes les heures, 12 fois par 24H.

Caractéristiques:

- · Lieu de fabrication : Chine
- · Estimation de la durée de vie : 2000 heures
- · Poids total (emballage inclus) : 300g
- · Fabrication : voir les résultats document Excel
- · Conditionnement :
 - o Emballage : Carton rigide blanchi.
- \cdot Livraison :

Nom	·
-----	---

o Site de production à entrepôt de logistique grande surface : Transport maritime Chine – France (Le Havre) distance 16000km

o Entrepôt à Magasin : Camion 38t Le Havre – Région Parisienne : distance 350 Km.

 \cdot Utilisation :

o Puissance moteur : 0,064W

o Durée d'utilisation : une heure par jour, 365 jours par an, pendant 3 ans (durée de vie estimée)

· Fin de vie : ordures ménagères.

• on va chercher à déterminer l'impact environnemental du robot suivant son cycle de vie

Exemple d'impacts Environnementaux d'un produit

Evaluation réalisée sur la base d'une utilisation de 10ans avec un renouvellement de batterie. Conditions détaillées dans le document COOPER PEP Mode d'emploi disponible sur notre site Internet <u>www.cooperfrance.com</u>.

INDICATEURS	VALEURS	UNITES
Epuisement des ressources naturelles	3.12 10 ⁻¹³	Années ⁻¹
Energie totale consommée	$5.76 \ 10^{+2}$	MJoules
Consommation d'eau	6.55 10 ⁺²	dm ³
Contribution à l'effet de serre	1.36 10 ⁺³	g~CO ₂ *
Contribution à l'appauvrissement de la couche d'ozone	$1.72 \ 10^{-3}$	g~CFC ₁₁ *
Contribution à la toxicité de l'air	$2.76 \ 10^{+7}$	m ³
Contribution à la formation d'ozone troposphérique	7.14	g∼C₂H₄*
Potentiel d'acidification de l'air	5.61	g~H ⁺ *
Contribution à la toxicité de l'eau	7.29 10 ⁺⁴	dm ³
Contribution à l'eutrophisation des plans d'eau	$1.05 \ 10^{+2}$	g∼PO₄ ³⁻ *
Production de déchets dangereux	3.58 10-1	kg

- Récupérer le dossier fichier TP eco conception robot moway
- Ouvrir le dossier et lancer le fichier

🔀 Bilan_Produit.exe 05/05/2011 16:40 Applica	ation 4 361 Ko
--	----------------

Avant de commencer le TP lire le doc Bilan_Produit_2008_Manuel.doc

🔒 ► Ordinateur ► OS (C:) ► Bilan_Produit							
Edition Afficha	ge Outils ?						
✓ Inclure dans la bibliothèque ✓ Partager avec ✓ Graver Nouveau dossier							
ris	Nom	Modifié le	Туре	Taille			
eau	🕙 Bilan_Produit_BDD_2011.xls	05/05/2011 17:23	Feuille Microsoft E	613 Ko			
placements récer	🗐 Bilan_Produit_Logiciel.xls	05/05/2011 17:20	Feuille Microsoft E	777 Ko			
échargements	🗐 Bilan_Produit_Machine_Café_standard.xls	05/05/2011 17:24	Feuille Microsoft E	83 Ko			
	🖷 Bilan_Produit_Manuel.doc	05/05/2011 15:24	Document Micros	4 835 Ko			
thèques	IMPORTANT_A_lire_avant_utilisation.txt	05/05/2011 17:26	Document texte	3 Ko			
:uments	unins000.dat	01/12/2011 09:49	Fichier DAT	2 Ko			
iges	🕞 unins000.exe	01/12/2011 09:49	Application	702 Ko			
sique	unins001.dat	24/11/2011 09:51	Fichier DAT	2 Ko			
éos	🐻 unins001.exe	24/11/2011 09:51	Application	702 Ko			

Lancer l'application « Bilan_Produit_logiciel.xls ».

. Lire vidéo sur site (<u>www.coursstimartinique.fr</u>, sti2d, TC, TP)

- · Activer les macros si nécessaire
- · Lire la première page affichée, puis Démarrer
- · Méthodologie (onglet) : Ouvrir Fichier
 - o Charger le fichier « Impact robot Moway.xls».
 - o Date : celle du jour du travail
 - o Auteur : modifier en écrivant le nom du groupe.
 - o Lire entièrement la page.
- · Unité fonctionnelle :
 - o Laisser le coefficient d'unité fonctionnelle à 1
 - o Compléter la brève description du système modélisé par : "Robot Moway"
- · Lancer le calcul des impacts.

Tableau robot moway

Nom:	•
------	---

Prénom :....

Sous-ense	Nom	Quantité	Unité	entaires utilisa
composan	Circuit			
ts	imprimé			
electroniq	CMS			
ues	(surface)	0,0027	m2	
composan				6
ts				capteurs*0
electroniq				,5 gr
ues	LED	0,0036	kg	+3LED*0,1g
composan				
ts				
electroniq	Batterie Li			
ues	ion	0,05	kg	
				Infrarouge
coque	ABS	0,0015	kg	avant
coque	Injection	0.0015	ka	avant
coque	DMMA	0,0015	ĸg	
coque	riviivia	0.0011	ka	arrière
coque	granures	0,0011	Ng	Infrarouge
coque	Injection	0,0011	kg	arrière
	Acier			
coque	courant	0,00018	kg	2 vis
	Fabricatio		-	-
	n			
coque	moyenne	0,00018	kg	2 vis
		r		Conduits
coque	ABS	0,0014	kg	lumière
				Conduits
coque	Injection	0,0014	kg	lumière
	Acier allié			
	nickel			
coque	chrome	0,00088	kg	Boule
	Fabricatio			
	n			
	moyenne			

			Chassis
coque	ABS	0,01337 kg	supérieur
			Chassis
coque	ABS	0,01624 kg	Support
coque	ABS	0.0007 kg	Interne
coque	Thermofor	0,0007 Ng	
	mage		
coque	(avec	0.01376 kg	Couvercle
coque	Thermofor	0,01070 Kg	convertere
	mage		Chassis
coque	(avec	0.01337 kg	supérieur
coque	Thermofor	0,01007 Ng	Superiou
	mage		Chappie
coque	(avec	0.01624 kg	inférieur
coque	Thermofor	0,01021 118	
	mage		Support
coque	(avec	0.0007 kg	Interne
coque	Carton	0,0007 118	
	rigide		
emballage	blanchi	0.15 kg	
cinoditage	Production	0,20 118	
	de boite		
	carton		
	rigide		
	imprimée		
emballage	offset	0.15 kg	
	•	-/	2 axes+2
			roues+ 2
Transmiss			disques+2
ion	ABS	0,0066 kg	pneus
			2 axes+2
			roues+ 2
Transmiss			disques +
ion	Injection	0,0066 kg	2 pneus
	•		2*(boite
			latérale +
Transmiss			couvercile
ion	PA6	0,0074 kg	boite)
			2*(boite
			latérale +
Transmiss			couvercile
ion	Injection	0,0074 kg	boite)
	Acier		2
	courant		réducteurs :
Transmiss	faiblemen		8 roues
ion	tallié	0,0157 kg	dentées
	Fabricatio		réducteurs :
Transmiss	n		8 roues
ion	moyenne	0,0157 kg	dentées

Enregistrer sous le nom "Impact robot Moway" (attention avec le bouton et non pas avec la fonction "enregistrer" d'Excel).

Visualiser les graphiques des résultats dans les onglets adéquats.

Nom :....

Prénom :....

• D'après le graphe « Impact par phase de vie », indiquez quel est la phase du cycle de vie du robot Moway qui a le plus grand impact sur l'environnement (expliquer réponse).

• Affichez alors le graphe correspondant à cette phase.

Sur ce nouveau graphique, vous pouvez, en positionnant le curseur de la souris sur le graphe, obtenir des renseignements sur la nature de l'origine de l'impact.

Citez les parties du robot qui sont à l'origine des impacts les plus importants.

2. Eco conception

- Ouvrir le fichier Coque
- modifier le matériaux de la coque en fonction du tableau précédent

Nom : Pr	énom :
----------	--------

coque (D	Aller à				
A Luces Pièc	e (coque)	_			
3 = ABS ◇ Plan c 311 ◇ Plan c 622 ◇ Plan c ↓ Origin	Objets caches de l'arbre Ajouter à la bibliothèque Ouvrir la mise en plan Commentaire Affichage de l'arbre		\		
lmpor 仑 Conge 仑 Conge 仑 Chanf	<u>P</u> ropriétés du document Co <u>n</u> figuration Publisher Apparence	,			
	Matériau	• 3E	Editer le Zone de	matériau surbrillance	
	Mon <u>t</u> rer/Cacher les objets de l'arbre Personnaliser le <u>m</u> enu		Enlo	Sélection	nnez editer

act moyen-haut)				
2010, copolymère d'acétal à		Description:		
cé	La t	fenêtre Matériau s'ouvre,		
ne	pu	is appliquer et fermer la		
	<u> </u>	lenetre.	Valeur	Unités
		Module d'élasticité	2000000000	N/m^2
énéral		Coefficient de Poisson	0.394	S.O.
osité		Module de cisaillement	318900000	N/m^2
sité		Masse volumique	1020	kg/m^3
enne densité		Limite de traction	30000000	N/m^2
Plaque acrylique coulée		Limite de compression suivant X		N/m^2
		Limite d'élasticité		N/m^2
(DP)		Coefficient de dilatation thermique suivant X		/K
(FD)		Conductivité thermique	0.2256	W/(m·K)
		Chaleur spécifique	1386	J/(ka-K)
lancer l'outil su	r l'im	Appliquer Fermer Enregist	rer Config.	Aide

Nom :	
-------	--

On va regarder l'impact sur l'environnement en fonction du procédé de fabrication (expliquer réponse)

• Choisir extrusion puis moulage et regarder celui qui a le moins d'impact (matériau ABS)

On va regarder l'impact sur l'environnement en fonction du matériau (expliquer réponse)

• refaire l'exercice en choisissant moulage pour les quatre matériaux ci-dessous et regarder celui qui a le moins d'impact (expliquer les réponses)

